Dose-finding designs using a novel quasi-continuous endpoint for multiple toxicities
نویسندگان
چکیده
The aim of a phase I oncology trial is to identify a dose with an acceptable safety profile. Most phase I designs use the dose-limiting toxicity, a binary endpoint, to assess the unacceptable level of toxicity. The dose-limiting toxicity might be incomplete for investigating molecularly targeted therapies as much useful toxicity information is discarded. In this work, we propose a quasi-continuous toxicity score, the total toxicity profile (TTP), to measure quantitatively and comprehensively the overall severity of multiple toxicities. We define the TTP as the Euclidean norm of the weights of toxicities experienced by a patient, where the weights reflect the relative clinical importance of each grade and toxicity type. We propose a dose-finding design, the quasi-likelihood continual reassessment method (CRM), incorporating the TTP score into the CRM, with a logistic model for the dose-toxicity relationship in a frequentist framework. Using simulations, we compared our design with three existing designs for quasi-continuous toxicity score (the Bayesian quasi-CRM with an empiric model and two nonparametric designs), all using the TTP score, under eight different scenarios. All designs using the TTP score to identify the recommended dose had good performance characteristics for most scenarios, with good overdosing control. For a sample size of 36, the percentage of correct selection for the quasi-likelihood CRM ranged from 80% to 90%, with similar results for the quasi-CRM design. These designs with TTP score present an appealing alternative to the conventional dose-finding designs, especially in the context of molecularly targeted agents.
منابع مشابه
A novel toxicity scoring system treating toxicity response as a quasi-continuous variable in Phase I clinical trials.
In almost all current Phase I designs, toxicity response is treated coarsely as a binary indicator of dose limiting toxicity (DLT) and a lot of useful toxicity information is discarded. We are the first to establish a novel toxicity scoring system to treat toxicity response as a quasi-continuous variable and utilize all toxicities in Phase I trial. The generally accepted and objective parts, su...
متن کاملDose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.
Escalation with overdose control (EWOC) is a Bayesian adaptive design for selecting dose levels in cancer Phase I clinical trials while controlling the posterior probability of exceeding the maximum tolerated dose (MTD). EWOC has been used by clinicians to design many cancer Phase I clinical trials, see e.g. [1-4]. However, this design treats the toxicity response as a binary indicator of dose ...
متن کاملPractical implementation of an adaptive phase I/II design in chronic myeloid leukaemia: evaluating both efficacy and toxicity using the EffTox design
Despite known limitations of algorithm based designs (e.g. 3+3) they are favoured for use in dose finding studies due to simplicity and familiarity. Bayesian adaptive designs can overcome these limitations as they’re more efficient and substantially more accurate. EffTox is such a design which aims to determine the optimal, tolerable and efficacious dose. We implemented this design in a multice...
متن کاملChallenges and Innovations in Phase I Dose-Finding Designs for Molecularly Targeted Agents and Cancer Immunotherapies
Phase I oncology trials are designed to identify a safe dose with an acceptable toxicity profile. In traditional phase I dose-finding design, the dose is typically determined based on the probability of severe toxicity observed during the first treatment cycle. The recent development of molecularly targeted agents and cancer immunotherapies call for new innovations in phase I designs, because o...
متن کاملAdaptive designs for identifying optimal biological dose for molecularly targeted agents.
Background Traditionally, the purpose of a dose-finding design in cancer is to find the maximum tolerated dose based solely on toxicity. However, for molecularly targeted agents, little toxicity may arise within the therapeutic dose range and the dose-response curves may not be monotonic. This challenges the principle that more is better, which is widely accepted for conventional chemotherapy. ...
متن کامل